Monitoring energy usage of heavy-haul iron ore trains with on-board energy meter for improving energy efficiency

Author:

Geiberger PhilippORCID,Liu ZhendongORCID,Berg Mats,Domay Christoph

Abstract

PurposeFor billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed and position. Since there is a strong demand for improving energy efficiency in Sweden, data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.Design/methodology/approachTo monitor energy efficiency, the present study, therefore, develops key performance indicators (KPIs), which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation. Energy meter data of IORE class locomotives, hauling highly uniform 30-tonne axle load trains with 68 wagons, together with additional data sources, are analysed to identify significant parameters for describing driver influence on energy usage.FindingsResults show that driver behaviour varies significantly and has the single largest influence on energy usage. Furthermore, parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions, e.g., axle loads and number of wagons, on energy usage.Originality/valueBased on the parametric studies, some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived. In the end, some possible measures for improving energy performance in heavy-haul operations are given.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainability Metrics and Measurement in Industry 4.0-Enabled SCM;Advances in Logistics, Operations, and Management Science;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3