An improved fatigue life prediction model based on loading sequence

Author:

Xue QiwenORCID,Du XiuyunORCID

Abstract

PurposeIn view of the difficulty in determining the key parameters d in the Corten-Dolan model, based on the introduction of small loads, damage degrees and stress states to the Corten-Dolan model and the existing improved model, the sequential effects of the adjacent two-stage load were further considered.Design/methodology/approachTwo improved Corten-Dolan models were established on the basis of modifying the parameter d by two different methods, namely, increasing stress ratio coefficient as well as considering the effects of loading sequence and damage degree as independent influencing factors respectively. According to the test data of the welded joints of common materials (standard 45 steel), alloy materials (standard 16Mn steel) and Q235B steel, the validity and feasibility of the above two improved models for fatigue life prediction were verified.FindingsResults show that, compared with the traditional Miner model and the existing Corten-Dolan improved model, the two improved models have higher prediction accuracy in the fatigue life prediction of welding materials whether under two-stage load or multi-stage load.Originality/valueBecause the mathematical expressions of the models are relatively simple and need no multi-layer iterative calculation, it is convenient to predict the fatigue life of welded structure in practical engineering.

Publisher

Emerald

Reference13 articles.

1. The method of determining the exponent d in the Corten-Dolan's fatigue damage formular;Journal of Mechanical Strength,1996

2. An improved Corten-Dolan's model based on damage and stress state effects;Journal of Mechanical Science and Technology,2015

3. Nonlinear fatigue damage cumulative rule based on strength degradation and its application to fatigue life reliability analysis;Journal of Basic Science and Engineering,2011

4. Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress;International Journal of Dmage Mechanics,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3