The investigation on flight quality of tilt-rotor aircraft

Author:

Lu Ke,Zhao Shanyong,Ma YUjie,Wu Shangjing,Su Cheng da

Abstract

Purpose This paper aims to present an investigation on flight quality analysis and design of tilt-rotor aircraft combined with corresponding flight quality specifications. Design/methodology/approach From the perspective of modal characteristics of tilt-rotor aircraft, it focuses on the analysis of the change rules of the longitudinal short-term motion mode, lateral roll convergence mode, spiral mode and Dutch roll mode. Then, the flight quality design research is carried out using the explicit model tracking control method. The quantitative relationship between flight quality requirements and explicit model is established. Accordingly, the closed-loop flight quality of XV-15 tilt-rotor aircraft is evaluated. Findings The stability of spiral mode is the result of the interaction of various aerodynamic derivatives and spiral instability occurs in helicopter mode. The other motion modes are stable in full flight mode and meet the requirements of level 1 specified in ADS-33E-PRF and MIL-F-8785C flight quality specifications. There is a quantitative relationship between flight quality requirements and explicit model, and the flight quality of tilt-rotor aircraft is improved through the explicit model tracking control method. Practical implications The presented analysis results showed the influence of motion modes and flight quality and the effectiveness of explicit model tracking control method in flight quality improvement, which could be considered as new information for further flight quality design of tilt-rotor aircraft. Originality/value The originality of the paper lies in the proposed design and analysis method of the flight quality of tilt-rotor aircraft from the direction of the influence of its aerodynamic derivatives and motion modes.

Publisher

Emerald

Subject

Aerospace Engineering

Reference20 articles.

1. Acree, C.W. and Johnson, W. (2008), “Aeroelastic stability of the LCTR2 civil tiltrotor”, Working paper, NASA Ames Research Center, Moffett Field, CA, 15 October.

2. Stability and control of the YUH-61A;Journal of the American Helicopter Society,1976

3. Development and evaluation of new high-speed ADS-33 mission task elements using a tiltrotor platform,2017

4. Tilt rotor pitch/flight-path handling qualities;Journal of the American Helicopter Society,2010

5. Development and simulation testing of high-speed evasive and attack MTEs for rotorcraft handling qualities evaluation,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3