Author:
Wang Jihe,Zhang Dexin,Chen GuoZhong,Shao Xiaowei
Abstract
Purpose
The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a fuel-balanced sense in terms of relative eccentricity and inclination vectors (E/I vectors).
Design/methodology/approach
By using the geometrical intuitive relative E/I vectors theory, the fuel-balanced VRC selection problem is reformulated as the geometrical problem to find the optimal point to equalize the distances between the VRC and the points determined by the relative E/I vectors of satellites in relative E/I vectors plane, which is solved by nonlinear programming method.
Findings
Numerical simulations demonstrate that the new proposed fuel-balanced formation keeping strategy is valid, and the new method achieves better fuel-balanced performance than the traditional method, which keeps formation with respect to geometrical formation center.
Research limitations/implications
The new fuel-balanced formation keeping reference trajectories planning method is valid for formation flying mission whose member satellite is in circular or near circular orbit in J2 perturbed orbit environment.
Practical implications
The new fuel-balanced formation keeping reference trajectories planning method can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.
Originality/value
The fuel-balanced reference trajectories planning problem is reformulated as a geometrical problem, which can provide insightful way to understand the dynamic nature of the fuel-balanced reference trajectories planning issue.
Reference18 articles.
1. GPS-based relative navigation for the proba-3 formation flying mission;Acta Astronautica,2013
2. Cluster planning and control for spacecraft formations,2004
3. Proximity operations of formation-flying spacecraft using an eccentricity/inclination vector separation;Journal of Guidance, Control, and Dynamics,2006
4. Spaceborne autonomous formation-flying experiment on the PRISMA mission;Journal of Guidance, Control, and Dynamics,2012
5. Decentralized mean orbit-element formation guidance, navigation, and control: Part 1,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献