Author:
Cui Feng,Gao Dong,Zheng Jianhua
Abstract
Purpose
The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field model error increases obviously during geomagnetic storms, which can still further reduce the navigation accuracy. The purpose of this paper is to improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms.
Design/methodology/approach
In this paper, magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter (MDEKF) is studied. The MDEKF algorithm can effectively remove the time-correlated portion of the measurement error and thus can evidently improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms. Real flight data from Swarm A are used to evaluate the performance of the MDEKF algorithm presented in this study. A performance comparison between the MDEKF algorithm and an extended Kalman filter (EKF) algorithm is investigated for different geomagnetic storms and sampling intervals.
Findings
The simulation results show that the MDEKF algorithm is superior to the EKF algorithm in terms of estimation accuracy and stability with a short sampling interval during geomagnetic storms. In addition, as the size of the geomagnetic storm increases, the advantages of the MDEKF algorithm over the EKF algorithm become more obvious.
Originality/value
The algorithm in this paper can improve the real-time accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms with a low computational burden and is very suitable for low-orbit micro- and nano-satellites.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献