Abstract
PurposeThis paper develops a framework for selecting the most efficient and effective preventive maintenance policy using multiple-criteria decision making and multi-objective optimization.Design/methodology/approachThe critical component is identified with a list of maintenance policies, and then its failure data are collected and the optimization objective functions are defined. Fuzzy AHP is used to prioritize each objective based on the experts' questionnaire. Weighted comprehensive criterion method is used to solve the multi-objective models for each policy. Finally, the effectiveness and efficiency are calculated to select the best maintenance policy.FindingsFor a fleet of buses in hot climate environment where coolant pump is identified as the most critical component, it was found that block-GAN policy is the most efficient and effective one with a 10.24% of cost saving and 0.34 expected number of failures per cycle compared to age policy and block-BAO policy.Research limitations/implicationsOnly three maintenance policies are compared and studied. Other maintenance policies can also be considered in future.Practical implicationsThe proposed methodology is implemented in UAE for selecting a maintenance scheme for a critical component in a fleet of buses. It can be validated later in other Gulf countries.Originality/valueThis research lays a solid foundation for selecting the most efficient and effective preventive maintenance policy for different applications and sectors using MCDM and multi-objective optimization to improve reliability and avoid economic loss.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献