IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance

Author:

Lee Youn JiORCID,Kwon Hyuk Jun,Seok Yujin,Hong Sang JeenORCID

Abstract

PurposeThe purpose of this paper is to demonstrate industrial Internet of Things (IIoT) solution to improve the equipment condition monitoring with equipment status data and process condition monitoring with plasma optical emission spectroscopy data, simultaneously. The suggested research contributes e-maintenance capability by remote monitoring in real time.Design/methodology/approachSemiconductor processing equipment consists of more than a thousand of components, and unreliable condition of equipment parts leads to the failure of wafer production. This study presents a web-based remote monitoring system for physical vapor deposition (PVD) systems using programmable logic controller (PLC) and Modbus protocol. A method of obtaining electron temperature and electron density in plasma through optical emission spectroscopy (OES) is proposed to monitor the plasma process. Through this system, parts that affect equipment and processes can be controlled and properly managed. It is certainly beneficial to improve the manufacturing yield by reducing errors from equipment parts.FindingsA web-based remote monitoring system provides much of benefits to equipment engineers to provide equipment data for the equipment maintenance even though they are physically away from the equipment side. The usefulness of IIoT for the e-maintenance in semiconductor manufacturing domain with the in situ monitoring of plasma parameters is convinced. The authors found the average electron temperature gradually with the increase of Ar carrier gas flow due to the increased atomic collisions in PVD process. The large amount of carrier gas flow, in this experimental case, was 90 sccm, dramatically decreasing the electron temperature, which represents kinetic energy of electrons.Research limitations/implicationsSemiconductor industries require high level of data security for the protection of their intellectual properties, and it also falls into equipment operational condition; however, data security through the Internet communication is not considered in this research, but it is already existing technology to be easily adopted by add-on feature.Practical implicationsThe findings indicate that crucial equipment parameters are the amount of carrier gas flow rate and chamber pressure among the many equipment parameters, and they also affect plasma parameters of electron temperature and electron density, which directly affect the quality of metal deposition process result on wafer. Increasing the gas flow rate beyond a certain limit can yield the electron temperature loss to have undesired process result.Originality/valueSeveral research studies on data mining with semiconductor equipment data have been suggested in semiconductor data mining domain, but the actual demonstration of the data acquisition system with real-time plasma monitoring data has not been reported. The suggested research is also valuable in terms of high cost and complicated equipment manufacturing.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference22 articles.

1. Requirements for IT systems of maintenance management;Advances in Intelligent Systems and Computing,2018

2. Equipment anomaly detection for semiconductor manufacturing by exploring unsupervised learning from sensory data;Sensors,2020

3. Condition monitoring and operational decision-making in modern semiconductor manufacturing systems,2018

4. Data-driven approach for fault detection and diagnostic in semiconductor manufacturing;IEEE Transactions on Automation Science and Engineering,2020

5. Fault detection and classification in plasma etch equipment for semiconductor manufacturing e-diagnostics;IEEE Transactions on Semiconductor Manufacturing,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3