Solution of discrete time–cost trade-off problem with adaptive search domain

Author:

Bettemir Önder HalisORCID,Birgonul M. TalatORCID

Abstract

PurposeExact solution of time–cost trade-off problem (TCTP) by the state-of-the-art meta-heuristic algorithms can be obtained for small- and medium-scale problems, while satisfactory results cannot be obtained for large construction projects. In this study, a hybrid heuristic meta-heuristic algorithm that adapts the search domain is developed to solve the large-scale discrete TCTP more efficiently.Design/methodology/approachMinimum cost slope–based heuristic network analysis algorithm (NAA), which eliminates the unfeasible search domain, is embedded into differential evolution meta-heuristic algorithm. Heuristic NAA narrows the search domain at the initial phase of the optimization. Moreover, activities with float durations higher than the predetermined threshold value are eliminated and then the meta-heuristic algorithm starts and searches the global optimum through the narrowed search space. However, narrowing the search space may increase the probability of obtaining a local optimum. Therefore, adaptive search domain approach is employed to make reintroduction of the eliminated activities to the design variable set possible, which reduces the possibility of converging into local minima.FindingsThe developed algorithm is compared with plain meta-heuristic algorithm with two separate analyses. In the first analysis, both algorithms have the same computational demand, and in the latter analysis, the meta-heuristic algorithm has fivefold computational demand. The tests on case study problems reveal that the developed algorithm presents lower total project costs according to the dependent t-test for paired samples with α = 0.0005.Research limitations/implicationsIn this study, TCTP is solved without considering quality or restrictions on the resources.Originality/valueThe proposed method enables to adapt the number of parameters, that is, the search domain and provides the opportunity of obtaining significant improvements on the meta-heuristic algorithms for other engineering optimization problems, which is the theoretical contribution of this study. The proposed approach reduces the total construction cost of the large-scale projects, which can be the practical benefit of this study.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3