Project portfolio risk analysis with the consideration of project interdependencies

Author:

Bai LibiaoORCID,Shi Huijing,Kang ShuyunORCID,Zhang BingbingORCID

Abstract

PurposeComprehensive project portfolio risk (PPR) analysis is essential for the success and sustainable development of project portfolios (PPs). However, project interdependency creates complexity for PPR analysis. In this study, considering the interdependency effect among projects, the authors develop a quantitative evaluation model to analyze PPR based on a fuzzy Bayesian network.Design/methodology/approachIn this paper, the primary purpose is to comprehensively evaluate project portfolio risk considering the interdependency effect using a systematical model. Accordingly, a fuzzy Bayesian network (FBN) is developed based on the existing studies. Specifically, first, the risks in project portfolios are identified from the project interdependencies perspective. Second, a fuzzy Bayesian network is adopted to model and quantify the interaction relationships among risks. Finally, the model is implemented to analyze the occurrence situation and characteristics of risks.FindingsThe interdependency effect can lead to high-stake risks, including weak financial liquidity, a lack of cross-project members and project priority imbalance. Furthermore, project schedule risks and inconsistency between product supply and market demand are relatively sensitive and should also be prioritized. Also, the validity of this risk evaluation model has been proved.Originality/valueThe findings identify the most sensitive risks for guaranteeing portfolio implementation and reveal interdependency effect can trigger some specific risks more often. This study proposes for the first time to measure and analyze project portfolio risk by a systematical model. It can help systematically assess and manage the complicated and interdependent risks associated with project portfolios.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference86 articles.

1. Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP;International Journal of Hydrogen Energy,2018

2. The role of project management office in developing knowledge management infrastructure;Engineering, Construction and Architectural Management,2020

3. Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian network;Reliability Engineering and System Safety,2018

4. A method for modelling operational risk with Fuzzy cognitive maps and Bayesian belief networks;Expert Systems with Applications,2018

5. Investment cost optimization for industrial project portfolios using technology mining;Technological Forecasting and Social Change,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3