Mining user queries with information extraction methods and linked data

Author:

Chardonnens Anne,Rizza Ettore,Coeckelbergs Mathias,van Hooland Seth

Abstract

Purpose Advanced usage of web analytics tools allows to capture the content of user queries. Despite their relevant nature, the manual analysis of large volumes of user queries is problematic. The purpose of this paper is to address the problem of named entity recognition in digital library user queries. Design/methodology/approach The paper presents a large-scale case study conducted at the Royal Library of Belgium in its online historical newspapers platform BelgicaPress. The object of the study is a data set of 83,854 queries resulting from 29,812 visits over a 12-month period. By making use of information extraction methods, knowledge bases (KBs) and various authority files, this paper presents the possibilities and limits to identify what percentage of end users are looking for person and place names. Findings Based on a quantitative assessment, the method can successfully identify the majority of person and place names from user queries. Due to the specific character of user queries and the nature of the KBs used, a limited amount of queries remained too ambiguous to be treated in an automated manner. Originality/value This paper demonstrates in an empirical manner how user queries can be extracted from a web analytics tool and how named entities can then be mapped with KBs and authority files, in order to facilitate automated analysis of their content. Methods and tools used are generalisable and can be reused by other collection holders.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference41 articles.

1. Alasiry, A.M. (2015), “Named entity recognition and classification in search queries”, PhD thesis, Birkbeck, University of London, London.

2. L’utilisation des entités nommées pour l’expansion sémantique des requêtes web,2014

3. Automatic classification of web queries using very large unlabeled query logs;ACM Transactions on Information Systems,2007

4. Context-aware query classification,2009

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3