Crowdsourcing for search engines: perspectives and challenges

Author:

Moradi Mohammad

Abstract

PurposeAs a relatively new computing paradigm, crowdsourcing has gained enormous attention in the recent decade. Its compliance with the Web 2.0 principles, also, puts forward unprecedented opportunities to empower the related services and mechanisms by leveraging humans’ intelligence and problem solving abilities. With respect to the pivotal role of search engines in the Web and information community, this paper aims to investigate the advantages and challenges of incorporating people – as intelligent agents – into search engines’ workflow.Design/methodology/approachTo emphasize the role of the human in computational processes, some specific and related areas are studied. Then, through studying the current trends in the field of crowd-powered search engines and analyzing the actual needs and requirements, the perspectives and challenges are discussed.FindingsAs the research on this topic is still in its infancy, it is believed that this study can be considered as a roadmap for future works in the field. In this regard, current status and development trends are delineated through providing a general overview of the literature. Moreover, several recommendations for extending the applicability and efficiency of next generation of crowd-powered search engines are presented. In fact, becoming aware of different aspects and challenges of constructing search engines of this kind can shed light on the way of developing working systems with respect to essential considerations.Originality/valueThe present study was aimed to portrait the big picture of crowd-powered search engines and possible challenges and issues. As one of the early works that provided a comprehensive report on different aspects of the topic, it can be regarded as a reference point.

Publisher

Emerald

Reference78 articles.

1. Beachbot: crowdsourcing garbage collection with amphibious robot network,2018

2. Crowdsourcing for relevance evaluation;ACM SIGIR Forum,2008

3. Crowdsourcing assessments for XML ranked retrieval,2010

4. Picture this: preferences for image search,2009

5. Repeatable and reliable search system evaluation using crowdsourcing,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3