Graph theoretic structural modeling based new measures of complexity for analysis of lean initiatives

Author:

Singh Varinder,Singru Pravin M.

Abstract

Purpose The purpose of this paper is to propose the use of graph theoretic structural modeling for assessing the possible reduction in complexity of the work flow procedures in an organization due to lean initiatives. A tool to assess the impact of lean initiative on complexity of the system at an early stage of decision making is proposed. Design/methodology/approach First, the permanent function-based graph theoretic structural model has been applied to understand the complex structure of a manufacturing system under consideration. The model helps by systematically breaking it into different sub-graphs that identify all the cycles of interactions among the subsystems in the organization in a systematic manner. The physical interpretation of the existing quantitative methods linked to graph theoretic methodology, namely two types of coefficients of dissimilarity, has been used to evolve the new measures of organizational complexity. The new methods have been deployed for studying the impact of different lean initiatives on complexity reduction in a case industrial organization. Findings The usefulness and the application of new proposed measures of complexity have been demonstrated with the help of three cases of lean initiatives in an industrial organization. The new measures of complexity have been proposed as a credible tool for studying the lean initiatives and their implications. Research limitations/implications The paper may lead many researchers to use the proposed tool to model different cases of lean manufacturing and pave a new direction for future research in lean manufacturing. Practical implications The paper demonstrates the application of new tools through cases and the tool may be used by practitioners of lean philosophy or total quality management to model and investigate their decisions. Originality/value The proposed measures of complexity are absolutely new addition to the tool box of graph theoretic structural modeling and have a potential to be adopted by practical decision makers to steer their organizations though such decisions before the costly interruptions in manufacturing systems are tried on ground.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3