PLM support for design platforms in industrialized house-building

Author:

Lennartsson Martin,André Samuel,Elgh Fredrik

Abstract

Purpose The purpose of this research is to support the customization ability for industrial house building companies striving to offer individualized products but with a strategy which includes a production facility. This is accomplished by analyzing the as-is state in terms of existing engineering assets and by proposing a to-be state using the design platform and product lifecycle management (PLM) support. Design/methodology/approach This study is based on design research methodology and collected data are in-depth interviews, document reviews and workshops and method development. The theoretical baseline is product platforms and the design platform. Findings The analysis showed that despite use of a platform, inherent assets are disorganized. Still, the identified object-based engineering assets were possible to include in a conceptual proposal for better management, both in the process and product view, using an asset relationship matrix and a PLM system. Practical implications The results should be applicable for industrial house building and off-site construction companies and offers an approach to identify and manage their assets and platforms which are crucial to stay competitive. Originality/value Previous research on design platforms has focused on engineer-to-order companies within the mechanical industry. The contribution of this paper lies in the application and support of the design platform for industrial house building and the introduction of PLM system support.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference37 articles.

1. Modeling of transdisciplinary engineering assets using the design platform approach for improved customization ability;Advanced Engineering Informatics,2018

2. The design platform–a coherent platform description of heterogeneous design assets for suppliers of highly customised systems;Journal of Engineering Design,2017

3. Customizations vs. platforms – a conceptual approach to cosi;IFIP Advances in Information and Communication Technology,2018

4. Engineering collaboration in product development of modular products,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3