A predictive multi-objective condition-based maintenance (CBM) policy considering ecological factors

Author:

Cai Ronghua,Yang JiameiORCID,Xu XueminORCID,Jiang AipingORCID

Abstract

PurposeThe purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.Design/methodology/approachBased on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.FindingsAn increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.Practical implicationsIn reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.Originality/valuePrevious research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3