Revival of traditional best practices for rangeland restoration under climate change in the dry areas

Author:

Ouled Belgacem Azaiez,Ben Salem Farah,Gamoun Mouldi,Chibani Roukaya,Louhaichi Mounir

Abstract

Purpose The purpose of this paper is to illustrate the benefits of reintroducing traditional grazing systems practices for improving arid rangelands. Grazing is the most extensive land use in southern Tunisia, but the rangelands have suffered many decades of severe degradation due to profound socioeconomic changes and the emergence of an agro-pastoral society in place of the former pastoral one. Traditional grazing systems (gdel and herd mobility), which had historically allowed for grazing deferment and control of grazing livestock were abandoned. Yet grazing management strategies are important tools to sustain integrated livestock rangeland production systems in dry areas in the face of ongoing climate change and human pressure. Design/methodology/approach This study assesses the revival of traditional best practices of rangeland resting in a representative community. Total plant cover, species composition, flora richness and range production were determined in six rangeland sites subjected respectively to one, two and three years of rest; one and two years of light grazing after rest; and free grazing (control). Findings Results showed that dry rangelands keep their resilience to the negative effects of climate change once human pressure is controlled. A maximum of two years of rest is enough to sustainably manage the rangelands in southern Tunisia, as this protection showed considerable and positive effects on the parameters scored. Originality/value The revival of the traditional best practices under new arrangements adapted to current biophysical and socioeconomic conditions would be an excellent tool to mitigate the negative effects of frequent droughts and reduce the animal feed costs that poor farmers face.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Development,Geography, Planning and Development,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3