Prognosis and fail detection in a dynamic rotor using artificial immunological system

Author:

Outa Roberto,Chavarette Fabio Roberto,Mishra Vishnu Narayan,Gonçalves Aparecido C.,Roefero Luiz G.P.,Moro Thiago C.

Abstract

Purpose In recent years, the mechanical industries began to apply many investments in research and technological development to obtain efficient methods to analyze the integrity of structures and prevent disasters and/or accidents, ensuring people’s lives and preventing economic losses. Any structure, whether mechanical or aeronautical, before being put into use undergoes a structural integrity assessment and testing. In this case, non-destructive evaluations are performed, aiming to estimate the degree of safety and reliability of the structure. For this, there are techniques traditionally used such as ultrasonic inspection, X-ray, acoustic emission tests, among other techniques. The traditional techniques may even have a good instrumental apparatus and be well formulated for structural integrity assessment; however, these techniques cannot meet growing industrial needs, even more so when structures are in motion. The purpose of this paper is to demonstrate artificial immune systems (AISs), ate and strengthen the emergence of an innovative technological tool, the biological immune systems and AISs, and these are presented as computing methods in the field of structural health monitoring (SHM). Design/methodology/approach The concept of SHM is based on a fault detection mechanism used in industries, and in other applications, involving the observation of a structure or a mechanical system. This observation occurs through the dynamic response of periodic measurements, later related to the statistical analysis, determining the integrity of the system. This study aims to develop a methodology that identifies and classifies a signal in normal signals or in faults, using an algorithm based on artificial immunological systems, being the negative selection algorithm, and later, this algorithm classifies the failures in probabilities of failure and degree of fault severity. The results demonstrate that the proposed SHM is efficient and robust for prognosis and failure detection. Findings The present study aims to develop different fast access methodologies for the prognosis and detection of failures, classifying and judging the types of failures based on AISs. The authors declare that the present study was neither published in any other vehicle of scientific information nor is under consideration for publication in another scientific journal, and that this paper strictly followed the ethical procedures of research and publication as requested. Originality/value This study is original by the fact that conventional structural integrity monitoring methods need improvements, which intelligent computing techniques can satisfy. Intelligent techniques are tools inspired by natural and/or biological processes and belong to the field of computational intelligence. They present good results in problems of pattern recognition and diagnosis and thus can be adapted to solve problems of monitoring and identifying structural failures in mechanical and aeronautical engineering. Thus, the proposal of this study demonstrates and strengthens the emergence of an innovative technological tool, the biological immune system and the AIS, and these are presented as computation methods in the field of SHM in rotating systems – a topic not yet addressed in the literature.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3