Free vibration analysis of fiber-metal laminated composite plates using differential, generalized and harmonic quadrature methods: experimental and numerical studies

Author:

Maraş SinanORCID,Yaman Mustafa

Abstract

PurposeThis study aims to demonstrate the numerical application of differential quadrature (DQ) methods and show the experimental application of free vibration analysis of fiber-metal laminated composite (FML) plates with various boundary conditions.Design/methodology/approachThe FMLs are hybrid structures consisting of fiber-reinforced polymer matrix composites such as carbon, glass, aramid and different metal sheets, and are currently widely used in the automobile, aircraft and aerospace industries. Thus, free vibration analysis of these hybrid materials is necessary for the design process. The governing equations of motion are derived based on the classical plate theory. The DQ, generalized DQ (GDQ) and harmonic DQ (HDQ) differential quadrature methods have been used to solve the governing equations of an FML composite plate numerically. The accuracy and convergence of the numerical model have been verified by comparing the results available in the published literature with the results obtained from these methods. Moreover, an experimental procedure has been performed in order to compare the results against those of the numerical methods.FindingsIt is noteworthy that a high degree of similarity and accuracy was observed between the numerical results obtained by the DQ methods and the experimental results. Thus, the present study validates the applicability of the DQ methods for designing the FML composite plates.Originality/valueIn this study, the advantages of the DQ methods have been demonstrated differently from previous studies on the vibration analysis of the FML plates.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3