Bi-objective green in-house transportation scheduling and fleet size determination in mixed-model assembly lines with mobile robots

Author:

Zhou BinghaiORCID,Zhang Jihua,Fei Qianran

Abstract

PurposeFacing the challenge of increasing energy cost and requirement of reducing the emissions, identifying the potential factors of them in the manufacturing factories is an important prerequisite to control energy consumption. This paper aims to present a bi-objective green in-house transportation scheduling and fleet size determination problem (BOGIHTS&FSDP) in automobile assembly line to schedule the material delivery tasks, which jointly take the energy consumption into consideration as well.Design/methodology/approachThis research proposes an optimal method for material handling in automobile assembly line. To solve the problem, several properties and definitions are proposed to solve the model more efficiently. Because of the non-deterministic polynomial-time-hard nature of the proposed problem, a Multi-objective Discrete Differential Evolution Algorithm with Variable Neighborhood Search (VNS-MDDE) is developed to solve the multi-objective problem.FindingsThe performances of VNS-MDDE are evaluated in simulation and the results indicate that the proposed algorithm is effective and efficient in solving BOGIHTS&FSDP problem.Originality/valueThis study is the first to take advantage of the robot's interactive functions for part supply in automobile assembly lines, which is both the challenge and trend of future intelligent logistics under the pressure of energy and resource. To solve the problem, a VNS-MDDE is developed to solve the multi-objective problem.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Material Transportation Scheduling System Based on Improved Genetic Algorithm;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

2. A case-oriented computational study for sustainable fleet planning in a battery closed-loop supply chain network under uncertainty;Engineering Computations;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3