Author:
Hu Yunjian,Sun Jie,Peng Wen,Zhang Dianhua
Abstract
Purpose
In the cold rolling process, friction coefficient, oil film thickness and other factors vary dramatically with the change in the rolling speed, which seriously affects the strip thickness deviation. This paper aims to improve the strip control precision with the forecast roll gap model based on CF-PSO-SVM approach in the rolling process.
Design/methodology/approach
In this paper, a novel forecasting model of the roll gap based on support vector machine (SVM) optimized by particle swarm optimization with compression factor (CF-PSO) is proposed. Based on lots of online data, the roll gap models regressed by PSO-SVM, genetic algorithm (GA)-SVM and CF-PSO-SVM are obtained and verified through evaluating the performances with the decision coefficient (R2), mean absolute error and root mean square error. In addition, with the good forecasting performances of CF-PSO-SVM, a roll gap compensation model is studied.
Findings
The results indicate that the proposed CF-PSO-SVM has excellent learning regression ability compared with other optimization algorithms. Meanwhile, a roll gap compensation model based on the rolling speed and plastic coefficient is obtained, which has been proved validated in product.
Originality/value
In this paper, the SVM algorithm is combined with traditional rolling technology to solve the problems in actual production, which has great supporting significance for the improvement of production efficiency.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献