A numerical method of lower bound dynamic shakedown analysis for 3D structures

Author:

Zhang Guichen,Peng Heng,Zhang Hongtao,Tang Juzhen,Liu Yinghua

Abstract

PurposeThe safety assessment of engineering structures under repeated variable dynamic loads such as seismic and wind loads can be considered as a dynamic shakedown problem. This paper aims to extend the stress compensation method (SCM) to perform lower bound dynamic shakedown analysis of engineering structures and a double-closed-loop iterative algorithm is proposed to solve the shakedown load.Design/methodology/approachThe construction of the dynamic load vertexes is carried out to represent the loading domain of a structure under both dynamic and quasi-static load. The SCM is extended to perform lower bound dynamic shakedown analysis of engineering structures, which constructs the self-equilibrium stress field by a series of direct iteration computations. The self-equilibrium stress field is not only related to the amplitude of the repeated variable load but also related to its frequency. A novel double-closed-loop iterative algorithm is presented to calculate the dynamic shakedown load multiplier. The inner-loop iteration is to construct the self-equilibrated residual stress field based on the certain shakedown load multiplier. The outer-loop iteration is to update the dynamic shakedown load multiplier. With different combinations of dynamic load vertexes, a dynamic shakedown load domain could be obtained.FindingsThree-dimensional examples are presented to verify the applicability and accuracy of the SCM in dynamic shakedown analysis. The example of cantilever beam under harmonic dynamic load with different frequency shows the validity of the dynamic load vertex construction method. The shakedown domain of the elbow structure varies with the frequency under the dynamic approach. When the frequency is around the resonance frequency of the structure, the area of shakedown domain would be significantly reduced.Research limitations/implicationsIn this study, the dynamical response of structure is treated as perfect elastoplastic. The current analysis does not account for effects such as large deformation, stochastic external load and nonlinear vibration conditions which will inevitably be encountered and affect the load capacity.Originality/valueThis study provides a direct method for the dynamical shakedown analysis of engineering structures under repeated variable dynamic load.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3