A unified general framework for small and finite strain two-invariants elastoplasticity

Author:

Spiezia NicolòORCID,Salomoni Valentina Anna LiaORCID

Abstract

PurposeThis paper proposes a unified original general framework, designed to theoretically develop and to extremely easily implement elastoplastic constitutive laws defined in the so called two-invariants space, both in small and finite strain regime.Design/methodology/approachA general return mapping algorithm is proposed, and particularly a standard procedure is developed to compute the two algorithmic tangent operators, required to solve the Newton–Raphson scheme at the local and global level and thus cast the elastoplastic algorithm within a FEM code.FindingsThis work demonstrates that the proposed procedure is fully general and can be applied whatever is the elastic law, the yield surface, the plastic potential function and the hardening law. Several numerical examples are reported, not only to demonstrate the accuracy and robustness of the algorithm, but also explain how to use this general algorithm also in other applications.Originality/valueThe proposed algorithm and its numerical implementation into a FEM code is new and original. The usefulness and the value of the algorithm is twofold: (1) it can be implemented in a small and finite strain simulation FEM code, in order to handle different types of constitutive laws in the same modular way, thus fully leveraging on modern object-oriented coding approach; (2) it can be used as a framework to develop (and then to implement) new constitutive models, since the researcher can simply define the relevant functions (and its main derivatives) and automatically get the numerical algorithm.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3