On the theoretical basis of memory-free approaches for fractional differential equations

Author:

Liu Q.X.,Liu J.K.,Chen Y.M.

Abstract

PurposeA nonclassical method, usually called memory-free approach, has shown promising potential to release arithmetic complexity and meets high memory-storage requirements in solving fractional differential equations. Though many successful applications indicate the validity and effectiveness of memory-free methods, it has been much less understood in the rigorous theoretical basis. This study aims to focus on the theoretical basis of the memory-free Yuan–Agrawal (YA) method [Journal of Vibration and Acoustics 124 (2002), pp. 321-324].Design/methodology/approachMathematically, the YA method is based on the validity of two fundamental procedures. The first is to reverse the integration order of an improper quadrature deduced from the Caputo-type fractional derivative. And, the second concerns the passage to the limit under the integral sign of the improper quadrature.FindingsThough it suffices to verify the integration order reversibility, the uniform convergence of the improper integral is proved to be false. Alternatively, this paper proves that the integration order can still be reversed, as the target solution can be expanded as Taylor series on [0, ∞). Once the integration order is reversed, the paper presents a sufficient condition for the passage to the limit under the integral sign such that the target solution is continuous on [0, ∞). Both positive and counter examples are presented to illustrate and validate the theoretical analysis results.Originality/valueThis study presents some useful results for the real performance for the YA and some similar memory-free approaches. In addition, it opens a theoretical question on sufficient and necessary conditions, if any, for the validity of memory-free approaches.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference31 articles.

1. A modified memory-free scheme and its Simulink implementation for FDES;Physica Scripta,2009

2. A numerical scheme for initial compliance and creep response of a system;Mechanics Research Communications,2009

3. Blind in a commutative world: simple illustrations with functions and chaotic attractors;Chaos, Solitons & Fractals,2018

4. Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties;Physica A: Statistical Mechanics and its Applications,2018

5. Decolonisation of decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena;European Physical Journal,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3