A practical discrete sizing optimization methodology for the design of high-rise concrete buildings

Author:

Lou HaopengORCID,Xiao Zhibin,Wan YinyuanORCID,Jin Fengling,Gao BoqingORCID,Li ChaoORCID

Abstract

PurposeIn this article, a practical design methodology is proposed for discrete sizing optimization of high-rise concrete buildings with a focus on large-scale and real-life structures.Design/methodology/approachThis framework relies on a computationally efficient approximation of the constraint and objective functions using a radial basis function model with a linear tail, also called the combined response surface methodology (RSM) in this article. Considering both the code-stipulated constraints and other construction requirements, three sub-optimization problems were constructed based on the relaxation model of the original problem, and then the structural weight could be automatically minimized under multiple constraints and loading scenarios. After modulization, the obtained results could meet the discretization requirements. By integrating the commercially available ETABS, a dedicated optimization software program with an independent interface was developed and details for practical software development were also presented in this paper.FindingsThe proposed framework was used to optimize different high-rise concrete buildings, and case studies showed that material usage could be saved by up to 12.8% compared to the conventional design, and the over-limit constraints could be adjusted, which proved the feasibility and effectiveness.Originality/valueThis methodology can therefore be applied by engineers to explore the optimal distribution of dimensions for high-rise buildings and to reduce material usage for a more sustainable design.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3