A time discontinuous Galerkin isogeometric analysis method for non-Fourier thermal wave propagation problem

Author:

Xia Yang,Guo Pan

Abstract

Purpose Numerical instability such as spurious oscillation is an important problem in the simulation of heat wave propagation. The purpose of this study is to propose a time discontinuous Galerkin isogeometric analysis method to reduce numerical instability of heat wave propagation in the medium subjected to heat sources, particularly heat impulse. Design/methodology/approach The essential vectors of temperature and the temporal gradients are assumed to be discontinuous and interpolated individually in the discretized time domain. The isogeometric analysis method is applied to use its property of smooth description of the geometry and to eliminate the mesh-dependency. An artificial damping scheme with proportional stiffness matrix is brought into the final discretized form to reduce the numerical spurious oscillations. Findings The numerical spurious oscillations in the simulation of heat wave propagation are effectively eliminated. The smooth description of geometry with spline functions solves the mesh-dependency problem and improves the numerical precision. Originality/value The time discontinuous Galerkin method is applied within the isogeometric analysis framework. The proposed method is effective in the simulation of the wave propagation problems subjecting to impulse load with numerical stability and accuracy.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference43 articles.

1. A numerical algorithm based on modified cubic trigonometric b-spline functions for computational modelling of hyperbolic-type wave equations;Engineering Computations,2017

2. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: an isogeometric analysis;Physica E: Low-Dimensional Systems and Nanostructures,2016

3. Thermoelasticity and irreversible thermodynamics;Journal of Applied Physics,1956

4. Dynamic thermal management for high-performance microprocessors,2001

5. A form of heat conduction equation which eliminates the paradox of instantaneous propagation;Compute Rendus,1958

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3