The necessary condition of function transformation with the inverse transformation relative error no enlargement

Author:

Jiang Cheng Zhi,Wei Yong,Ling Jun

Abstract

Purpose – The purpose of this paper is to discuss the necessary condition of the relative error between continuous function transformation after inverse transformation and original sequence is not larger than the relative error between transformed sequence and its corresponding simulation sequence. Design/methodology/approach – First, explore the function transformation feature of after inverse transformation the relative error not enlarged, then combine this feature with the function transformation feature of not enlarge the class ratio dispersion, not reduce the smoothness which author have got, and obtain a kind of special transformation that not enlarge class ratio dispersion, not reduce the smoothness and after inverse transformation keep the relative not enlarged. Meanwhile, offer the concrete form of this special function type to monotone increasing continuous function transformation and monotone decreasing continuous function transformation, respectively, and study its properties. Findings – This paper finds the concise and important feature of monotonically increasing function transformation after inverse transformation whether the relative error enlarge or not is at first, the concise and important feature of monotonically decreasing function transformation after inverse transformation relative error not enlarged is. And find that the ideal function transformation which both reduces class ratio dispersion strictly and keeps error of inverse transformation not enlarged is non-exist for monotone increasing function transformation and monotone decreasing function transformation. Practical implications – Use the necessary condition given by this paper, it may use to judge whether function transformation can keep relative error of inverse transformation not enlarged by easy data calculation before build modeling, therefore, choose the best function transformation. These results tell the authors: the paper cannot treat any functions as the same that whether the relative error of inverse transformation will not enlarge (or not reduced), but the authors should divide them into two parts to discuss that it will be expanded in some range or be reduced in some range. It will affect the future direction of the research, not to find the function transform both satisfies the class ratio dispersion reduced and keep the relative error of inverse transformation not enlarged, but to study which kind of function transform will narrow class ratio dispersion in some range, after the modeling accuracy improvement, but after the inverse transformation the relative error enlarged, and at this time the simulation accuracy is still higher than the simulation accuracy of original data modeling directly. Which kind of function transform will expand class ratio dispersion in some range, after the modeling accuracy diminution, but after the inverse transformation the relative error not enlarged, and now the simulation accuracy is still higher than the simulation accuracy of original data modeling directly, too. Originality/value – Let peers no longer spend energy in seeking the function transformation which both reduce class ratio dispersion and keep relative error of inverse transformation not enlarged. At the same time, also remind peers that even if a function transformation reduces class ratio dispersion greatly, the data modeling accuracy improves a lot after transformation, but the error of inverse transformation is may quite large, still. Besides, even if function transformation increases class ratio dispersion, the data modeling accuracy is not good after transformation, the ideal situation after inverse transformation would occur, and the possibility cannot be excluded.

Publisher

Emerald

Reference12 articles.

1. Chen, T.J. (1990), “A new development of grey forecasting model”, Systems Engineering , Vol. 8 No. 4, pp. 50-52.

2. Deng, J.L. (1982), “Control problems of grey system”, System and Control Letters , Vol. 5 No. 2, pp. 288-294.

3. Deng, J.L. (2002), Estimate and Decision of Grey System , Huazhong University of Science and Technology Press, Wuhan.

4. He, B. and Meng, Q. (2002), “Study on generalization for grey forecasting model”, Systems Engineering Theory and Practice , Vol. 22 No. 9, pp. 137-140.

5. Huang, F.Y. (1994), “Method of transformation for modelling in grey systems”, Systems Engineering Theory and Practice , Vol. 14 No. 6, pp. 35-39.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the properties of separable binary functions;Grey Systems: Theory and Application;2023-07-14

2. Application of combined model with DGM(1,1) and linear regression in grain yield prediction;Grey Systems: Theory and Application;2018-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3