Fog computing and IoT based healthcare support service for dengue fever

Author:

Singh Sonia,Bansal Ankita,Sandhu Rajinder,Sidhu Jagpreet

Abstract

Purpose This paper has proposed a Fog architecture-based framework, which classifies dengue patients into uninfected, infected and severely infected using a data set built in 2010. The aim of this proposed framework is to developed a latency-aware system for classifying users into different categories based on their respective symptoms using Internet of Things (IoT) sensors and audio and video files. Design/methodology/approach To achieve the aforesaid aim, a smart framework is proposed, which consist of three components, namely, IoT layer, Fog infrastructure and cloud computing. The latency of the system is reduced by using network devices located in the Fog infrastructure. Data generated by IoT layer will first be processed by Fog layer devices which are in closer proximity of the user. Raw data and data generated will later be stored on cloud infrastructure, from where it will be sent to different entities such as user, hospital, doctor and government healthcare agencies. Findings Experimental evaluation proved the hypothesis that using the Fog infrastructure can achieve better response time for latency sensitive applications with the least effect on accuracy of the system. Originality/value The proposed Fog-based architecture can be used with IoT to directly link it with the Fog layer.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference26 articles.

1. Best practices in dengue surveillance: a report from the Asia-Pacific and Americas dengue prevention boards;PLoS Neglected Tropical Diseases,2010

2. Buyya, R., Srirama, S.N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe, E., Javadi, B., Vaquero, L.M., Netto, M.A.S., Toosi, A.N., Rodriguez, M.A., Llorente, I.M.D., Capitani di Vimercati, S., Samarati, P., Milojicic, D., Varela, C., Bahsoon, R., Dias de Assuncao, M., Rana, O., Zhou, W., Jin, H., Gentzsch, W., Zomaya, A. and Shen, H. (2017), “A manifesto for future generation cloud computing: research directions for the next decade”, available at: http://arxiv.org/abs/1711.09123 (accessed 8 February 2018).

3. FAST: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation,2015

4. Fog computing;IEEE Internet Computing,2017

5. Fog and IoT: an overview of research opportunities;IEEE Internet of Things Journal,2016

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3