Fiber Bragg grating sensor-based monitoring strategy for slope deformation in centrifugal model test

Author:

Guo Yongxing,Fu Jianjun,Li Longqi,Xiong Li

Abstract

Purpose Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability mechanisms. Simply observing the slope landslide before and after a centrifugal model test cannot reveal the processes involved in real-time deformation. Electromagnetic sensors have severed as an existing method for real-time measurement, however, this approach has significant challenges, including poor signal quality, interference, and complex implementation and wiring schemes. This paper aims to overcome the shortcomings of the existing measurement methods. Design/methodology/approach This work uses the advantages of fiber Bragg grating (FBG) sensors with their small form-factor and potential for series multiplexing in a single fiber to demonstrate a monitoring strategy for model centrifugal tests. A slope surface deformation displacement sensor, FBG anchor sensor and FBG anti-slide piling sensor have been designed. These sensors are installed in the slope models, while centrifugal acceleration tests under 100 g are carried out. Findings FBG sensors obtain three types of deformation information, demonstrating the feasibility and validity of this measurement strategy. Originality/value The experimental results provide important details about instability mechanisms of a slope, which has great significance in research on slope model monitoring techniques and slope stability.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference19 articles.

1. Fiber Bragg grating-based plane strain monitoring of aerostat envelope structures;Applied Optics,2013

2. Fiber optic sensor technology: an overview;Sensors and Actuators A: Physical,2000

3. Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor;IEEE Sensors Journal,2016

4. A three-axis force fingertip sensor based on fiber Bragg grating;Sensors and Actuators A: Physical,2016

5. Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation;Sensor Review,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3