Identification of defected sensors in an array of amperometric gas sensors

Author:

Dmitrzak Marta,Kalinowski Pawel,Jasinski Piotr,Jasinski Grzegorz

Abstract

Purpose Amperometric gas sensors are commonly used in air quality monitoring in long-term measurements. Baseline shift of sensor responses and power failure may occur over time, which is an obstacle for reliable operation of the entire system. The purpose of this study is to check the possibility of using PCA method to detect defected samples, identify faulty sensor and correct the responses of the sensor identified as faulty. Design/methodology/approach In this work, the authors present the results obtained with six amperometric sensors. An array of sensors was exposed to sulfur dioxide at the following concentrations: 0 ppm (synthetic air), 50 ppb, 100 ppb, 250 ppb, 500 ppb and 1000 ppb. The damage simulation consisted in adding to the sensor response a value of 0.05 and 0.1 µA and replacing the responses of one of sensors with a constant value of 0 and 0.15 µA. Sensor validity index was used to identify a damaged sensor in the matrix, and its responses were corrected via iteration method. Findings The results show that the methods used in this work can be potentially applied to detect faulty sensor responses. In the case of simulation of damage by baseline shift, it was possible to achieve 100% accuracy in damage detection and identification of the damaged sensor. The method was not very successful in simulating faults by replacing the sensor response with a value of 0 µA, due to the fact that the sensors mostly gave responses close to 0 µA, as long as they did not detect SO2 concentrations below 250 ppb and the failure was treated as a correct response. Originality/value This work was inspired by methods of simulating the most common failures that occurs in amperometric gas sensors. For this purpose, simulations of the baseline shift and faults related to a power failure or a decrease in sensitivity were performed.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference24 articles.

1. Drift correction for gas sensors using multivariate methods;Journal of Chemometrics,2000

2. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays;Review of Scientific Instruments,2016

3. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis;IEEE Transactions on Semiconductor Manufacturing,2006

4. On the application of PCA technique to fault diagnosis;Tsinghua Science and Technology,2010

5. Limited selectivity of amperometric gas sensors operating in multicomponent gas mixtures and methods of selectivity improvement;Bulletin of the Polish Academy of Sciences: Technical Sciences,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3