An end-to-End deep context gate convolutional visual odometry system based on lightweight attention mechanism

Author:

Xu Yan,Qin Hong,Huang Jiani,Wang Yanyun

Abstract

Purpose Conventional learning-based visual odometry (VO) systems usually use convolutional neural networks (CNN) to extract features, where some important context-related and attention-holding global features might be ignored. Without essential global features, VO system will be sensitive to various environmental perturbations. The purpose of this paper is to design a novel learning-based framework that aims to improve accuracy of learning-based VO without decreasing the generalization ability. Design/methodology/approach Instead of CNN, a context-gated convolution is adopted to build an end-to-end learning framework, which enables convolutional layers that dynamically capture representative local patterns and composes local features of interest under the guidance of global context. In addition, an attention mechanism module is introduced to further improve learning ability and enhance robustness and generalization ability of the VO system. Findings The proposed system is evaluated on the public data set KITTI and the self-collected data sets of our college building, where it shows competitive performance compared with some classical and state-of-the-art learning-based methods. Quantitative experimental results on the public data set KITTI show that compared with CNN-based VO methods, the average translational error and rotational error of all the test sequences are reduced by 45.63% and 37.22%, respectively. Originality/value The main contribution of this paper is that an end-to-end deep context gate convolutional VO system based on lightweight attention mechanism is proposed, which effectively improves the accuracy compared with other learning-based methods.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference25 articles.

1. Automatic differentiation in pytorch,2017

2. Novel dataset for fine-grained image categorization. In first workshop on fine-grained visual categorization,2011

3. Feedback networks,2017

4. Are we ready for autonomous driving? The KITTI vision benchmark suite,2012

5. StereoScan: dense 3d reconstruction in real-time,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3