Abstract
PurposeIn the equatorial Pacific, rainfall is affected by global climate phenomena, such as El Niño Southern Oscillation (ENSO). However, current publicly available methodologies for valuing weather derivatives do not account for the influence of ENSO. The purpose of this paper is to develop a complete framework suitable for valuing rainfall derivatives in the equatorial Pacific.Design/methodology/approachIn this paper, we implement a Markov chain for the occurrence of rain and a gamma model for the conditional quantities using vector generalized linear models (VGLM). The ENSO forecast probabilities reported by the International Research Institute for Climate and Society (IRI) are included as independent variables using different alternatives. We then employ the Esscher transform to price rainfall derivatives.FindingsThe methodology is applied and calibrated using the historical rainfall data collected at the El Dorado airport weather station in Bogotá. All the estimated coefficients turn out to be significant. The results prove more accurate than those of Markovian gamma models based on purely statistical descriptions of the daily rainfall probabilities.Originality/valueThis procedure introduces the novelty of incorporating variables related to the climatic phenomena, which are the forecast probabilities regularly published for the occurrence of El Niño and La Niña.
Subject
Agricultural and Biological Sciences (miscellaneous),Economics, Econometrics and Finance (miscellaneous)
Reference46 articles.
1. On the functioning of the southern oscillation in the south american sector. Part I: surface climate;Monthly Weather Review,1988
2. A new look at the statistical model identification,1974
3. Skill of real-time seasonal enso model predictions during 2002-11: is our capability increasing?;Bulletin of the American Meteorological Society,2012
4. Modeling and pricing in financial markets for weather derivatives;World Scientific,2013
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献