Abstract
PurposeIn order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.Design/methodology/approachIn the competitive growth and industries 4.0, the prediction in the cost plays a key role.FindingsAt the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.Originality/valueThe prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献