Design and implementation of construction cost prediction model based on SVM and LSSVM in industries 4.0

Author:

Fan Miao,Sharma AshutoshORCID

Abstract

PurposeIn order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.Design/methodology/approachIn the competitive growth and industries 4.0, the prediction in the cost plays a key role.FindingsAt the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.Originality/valueThe prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.

Publisher

Emerald

Subject

General Computer Science

Reference30 articles.

1. A machine learning approach for cost prediction analysis in environmental governance engineering;Neural Computing and Applications,2019

2. Construction cost prediction model for conventional and sustainable college buildings in North America;Journal of Taibah University for Science,2017

3. A novel construction cost prediction model using hybrid natural and light gradient boosting;Advanced Engineering Informatics,2020

4. Track irregularities prediction based on Improved GM (1,1) and woa-lssvm combined forecasting model;Railway standard design,2019

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3