Optimization of FDM 3D printing parameters for high strength PEEK using the Taguchi method and experimental validation

Author:

Jiang Cho-Pei,Cheng Yung-Chang,Lin Hong-Wei,Chang Yu-Lee,Pasang Tim,Lee Shyh-Yuan

Abstract

Purpose Polyetheretherketone (PEEK) is used to manufacture biomedical implants because it has a high strength-to-weight ratio and high strength and is biocompatible. However, the use of fused deposition modeling to print a PEEK results in low strength and crystallinity. This study aims to use the Taguchi method to optimize the printing factors to obtain the highest tensile strength of the printed PEEK object. The annealing effect on printed PEEK object and crystallinity are also investigated. Design/methodology/approach This study determines the printing factors including the printing speed, layer thickness, printing temperature and extrusion width. Taguchi experimental design with a L9 orthogonal array is used to print the tensile specimen and carried out the tensile test to compare the tensile strength and porosity. Analysis of variance (ANOVA) is used to determine the experimental error and to determine the optimization printing parameters to obtain the highest tensile strength. A multivariate linear regression analysis is used to obtain the linear regression equation for predicting the theoretical tensile strength. An X-ray analysis is achieved to evaluate the crystalline of printed object. The effect of annealing is investigated to improve the tensile strength of printed part. An intervertebral lumber device is printed to demonstrate the feasibility of the obtained optimization parameters for practical application. Findings Taguchi experiment designs nine sets of parameters to print the PEEK tensile specimen. The experimental results and the ANOVA present that the order in which the factors affect the tensile strength for printed PEEK parts is the layer thickness, the extrusion width, the printing speed and the printing temperature. The optimized printing parameters are a printing speed of 5 mm/s, a layer thickness of 0.1 mm, a printing temperature of 395 °C and an extrusion strand width of 0.44 mm. The average tensile strength of printed specimen with the optimized printing parameters is 91.48 MPa, which is slightly less than the theoretical predicted value of 94.34 MPa. After annealing, the tensile strength increases to 98.85 MPa, which is comparable to that for molded PEEK and the porosity decreases to 0.3 from 3.9%. X-ray diffraction results show that all printed and annealed specimens have a high degree of crystallinity. The printed intervertebral lumber device has ultimate compressive load of 13.42 kN. Originality/value The optimized printing parameters is suitable for low-price fused deposition modeling machine because it does not involve a table at high temperature and can print the PEEK object with high tensile strength and good crystalline. Annealing parameters offer a good solution for tensile strength improvement.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3