Analytical models to estimate the structural behaviour of fused deposition modelling components

Author:

Cerda-Avila Steffany N.,Medellín-Castillo Hugo I.,Lim Theodore

Abstract

Purpose The purpose of this study is to evaluate the capability and performance of analytical models to predict the structural mechanical behaviour of parts fabricated by fused deposition modelling (FDM). Design/methodology/approach A total of eight existing and newly proposed analytical models, tailored to satisfy the structural behaviour of FDM parts, are evaluated in terms of their capability to predict the ultimate tensile stress (UTS) and the elastic modulus (E) of parts made of polylactic acid (PLA) by the FDM process. This evaluation is made by comparing the structural properties predicted by these models with the experimental results obtained from tensile tests on FDM specimens fabricated with variable infill percentage, perimeter layers and build orientation. Findings Some analytical models are able to predict with high accuracy (prediction errors smaller than 5%) the structural behaviour of FDM and categories of similar additive manufactured parts. The most accurate model is Gibson’s and Ashby, followed by the efficiency model and the two new proposed exponential and variant Duckworth models. Research limitations/implications The study has been limited to uniaxial loading conditions along three different build orientations. Practical implications The structural properties of FDM parts can be predicted by analytical models based on the process parameters and material properties. Product engineers can use these models during the design for the additive manufacturing process. Originality/value Existing methods to estimate the structural properties of FDM parts are based on experimental tests; however, such methods are time-consuming and costly. In this work, the use of analytical models to predict the structural properties of FDM parts is proposed and evaluated.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3