Using AI to predict service agent stress from emotion patterns in service interactions

Author:

Bromuri Stefano,Henkel Alexander P.ORCID,Iren Deniz,Urovi Visara

Abstract

PurposeA vast body of literature has documented the negative consequences of stress on employee performance and well-being. These deleterious effects are particularly pronounced for service agents who need to constantly endure and manage customer emotions. The purpose of this paper is to introduce and describe a deep learning model to predict in real-time service agent stress from emotion patterns in voice-to-voice service interactions.Design/methodology/approachA deep learning model was developed to identify emotion patterns in call center interactions based on 363 recorded service interactions, subdivided in 27,889 manually expert-labeled three-second audio snippets. In a second step, the deep learning model was deployed in a call center for a period of one month to be further trained by the data collected from 40 service agents in another 4,672 service interactions.FindingsThe deep learning emotion classifier reached a balanced accuracy of 68% in predicting discrete emotions in service interactions. Integrating this model in a binary classification model, it was able to predict service agent stress with a balanced accuracy of 80%.Practical implicationsService managers can benefit from employing the deep learning model to continuously and unobtrusively monitor the stress level of their service agents with numerous practical applications, including real-time early warning systems for service agents, customized training and automatically linking stress to customer-related outcomes.Originality/valueThe present study is the first to document an artificial intelligence (AI)-based model that is able to identify emotions in natural (i.e. nonstaged) interactions. It is further a pioneer in developing a smart emotion-based stress measure for service agents. Finally, the study contributes to the literature on the role of emotions in service interactions and employee stress.

Publisher

Emerald

Subject

Strategy and Management,Tourism, Leisure and Hospitality Management,Business, Management and Accounting (miscellaneous)

Reference95 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3