Development of a stream function-upper bound analysis applicable to the process of plate rolling

Author:

Asgharzadeh Amir,Serajzadeh Siamak

Abstract

Purpose – The purpose of this paper is to develop a mathematical solution to estimate the deformation pattern and required power in cold plate rolling using coupled stream function method and upper bound theorem. Design/methodology/approach – In the first place, an admissible velocity field and the geometry of deformation zone are derived from a new stream function. Then, the optimum velocity field is obtained by minimizing the corresponding power function. Also, to calculate the adiabatic heating during high speed rolling operations, a two-dimensional conduction-convection problem is sequentially coupled with the mechanical model. To verify the predictions, rolling experiments on aluminum plates are conducted and also, a finite element analysis is performed by Abaqus/Explicit. The predicted deformation zone is then compared with the experimentally measured region as well as with the results of the finite element analysis. Findings – The results show that the predicted deformation zone and the temperature distribution fit reasonably with the experimental data while much lower computational cost needs comparing to the fully finite element analysis. Originality/value – A new stream function is proposed to properly describe the velocity field and deformation pattern during plate rolling considering the neutral point. Furthermore, the employed algorithm can be simply coupled with the thermal finite element analysis.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3