Blister test to evaluate the multiwall carbon nanotubes (MWCNT) - Woven carbon fiber-reinforced epoxy used for repairing pipelines

Author:

Ahmed Payman SahbahORCID,Kamal Ava Ali,Abdulkader Niveen Jamal,Fadhil Basim MohammedORCID,Khoshnaw FuadORCID

Abstract

PurposePipelines are subject to pits, holes and cracks after staying in service for a while, especially in harsh environments. To repair the pipelines, composite materials are used, due to composite materials' low cost, high-corrosion resistance and easy handling. This study aims to investigate the reliability of the blister test for evaluating the bonding strength of multiwall carbon nanotube (MWCNT) on woven carbon-reinforced epoxy.Design/methodology/approach Flexural, hardness and Izod impact tests were used to evaluate MWCNT effect on the epoxy by adding different amounts, 0.2, 0.4, 0.6, 0.8 and 1 wt. %, of MWCNT, to be compared with pure epoxy.FindingsThe results showed that 0.8 wt.% gives the highest strength. The experimental results of 0.8 wt.% MWCNT reinforced carbon composite was compared with the finite element model under blister test, and the results showed high similarities.Originality/valueEvaluation of the reliability and the advantages of MWCNT considering the high aspect ratio and high tensile strength, which is more than 15 times compared to steel, MWCNT enhances the strength, stiffness and toughness of epoxy used as a matrix in repairing pipelines, which leads to an increase in the resistance of composite materials against oil internal pressure before delamination.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference35 articles.

1. Multi-walled carbon nanotube reinforced polymer as a bonded repair for Al 2024-T3 fatigue crack growth;Revista Matéria,2018

2. Finite element interface models for the delamination analysis of laminated composites mechanical and computational issues;International Journal for Numerical Methods in Engineering,2001

3. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials;ASTM D790-10,2016

4. Standard test method for polymer property—Durometer hardness;ASTM D2240-00,2017

5. The American Society of Mechanical Engineers;ASME PCC-2-2015,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3