Analysis and profiles of solution for a highly nonlinear model of pressure driven flame propagation in nonhomogeneous medium

Author:

Rahman Saeed UrORCID,Díaz Palencia José LuisORCID

Abstract

PurposeThis article aims to study a model of flame propagation in a nonhomogeneous medium with a p-Laplacian operator. The intention with such operator is to model the effects of slow and fast diffusion, that can appear in a nonhomogeneous media, depending on the pressure driven conditions. In addition, the authors introduce a general form in the reaction term, that introduces the flame chemical kinetics.Design/methodology/approachTo introduce the governing equations, the authors depart from previously reported models in flame propagation, but the authors consider a new modeling approach based on a p-Laplacian operator.FindingsThe authors provide evidences of regularity and uniqueness of solutions. Afterward, the authors introduce profiles of stationary solutions based on the definition of a Hamiltonian for the newly discussed model. Eventually, the authors obtain exponential profiles solutions with the help of a scaling, that transforms the model into a nonlinear Hamilton–Jacobi equation.Originality/valueThe new model has not been previously reported in the literature. The authors consider that the mathematical properties of a p-laplacian (in particular the property known as finite propagation) is of inherent interest to model pressure drive flames with slow or fast diffusion. Indeed, the authors’ approach has the value of providing an operator that can fit better to model flame propagation. In addition, the authors introduce a general form of chemical kinetics, to make the authors’ model further general.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference31 articles.

1. Exponential stability for a plate equation with p-Laplacian and memory terms;Mathematical Methods in the Applied Sciences,2012

2. Asympotitical spherical symmetry of the free boundary in degenerate diffusion equations;Annali di Matematica Pura ed Applicata,1987

3. Asympotitical spherical symmetry of the free boundary in degenerate diffusion equations;Annali di Matematica Pura ed Applicata,1987

4. Origin of the p-Laplacian and A. Missbach;Electronic Journal of Differential Equations,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3