Effect of grain orientation distribution on the mechanical properties of Al-7.02Mg-1.78Zn alloys

Author:

Chen XinORCID,Zheng XiaoyuORCID,He Meiling,Liu YulingORCID,Mao Hong,Li Xiwu,Yan Hongwei,Kong Yi,Li Liya,Du YongORCID

Abstract

PurposeDuring the forming process, aluminum alloy sheets develop various types of textures and are subjected to cyclic loading as structural components, resulting in fatigue damage. This study aims to develop polycrystalline models with different orientation distributions and incorporate suitable fatigue indicator parameters to investigate the effect of orientation distribution on the mechanical properties of Al-7.02Mg-1.78Zn alloys under cyclic loading.Design/methodology/approachIn this study, a two-dimensional polycrystalline model with 150 equiaxed grains was constructed based on optical microscope images. Subsequently, six different orientation distributions were assigned to this model. The fatigue indicator parameter of strain energy dissipation is utilized to analyze the stress response and fatigue crack driving force in polycrystalline models with different orientation distributions subjected to cyclic loading.FindingsThe study found that orientation distribution significantly influences fatigue crack initiation. Orientation distributions with a larger average Schmid factor exhibit reduced stress response and lower fatigue indicator parameters. Locations with a larger average Schmid factor experience greater plastic deformation and present a higher risk for fatigue crack initiation. RVE with a single orientation undergoes more rotation to reach cyclic steady state under cyclic loading due to the ease of deformation transfer.Originality/valueCurrently, there are no reports in the literature on the calculation of fatigue crack initiation for Al-Mg-Zn alloys using the crystal plasticity finite element method. This study presents a novel strategy for simulating the response of Al-7.02Mg-1.78Zn materials with different orientation distributions under symmetric strain cyclic loading, providing valuable references for future research.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3