Glucose oxidase-based biosensor for glucose detection from biological fluids

Author:

Mandpe Pankaj,Prabhakar Bala,Gupta Hunny,Shende Pravin

Abstract

PurposeThe present study aims to summarize different non-invasive techniques for continuous glucose monitoring (CGM) in diabetic patients using glucose-oxidase biosensors. In diabetic patients, the self-monitoring of blood glucose (BG) levels through minimally invasive techniques provides a quick method of measuring their BG concentration, unlike conventional laboratory measurements. The drawbacks of minimally invasive techniques include physical pain, anxiety and reduced patient compliance. To overcome these limitations, researchers shifted their attention towards the development of a pain-free and non-invasive glucose monitoring system, which showed encouraging results.Design/methodology/approachThis study reviews the development of minimally and non-invasive method for continuous glucose level monitoring in diabetic or hyperglycemic patients. Specifically, glucose monitoring using non-invasive techniques, such as spectroscopy-based methods, polarimetry, fluorescence, electromagnetic variations, transdermal extraction-based methods and using body fluids, has been discussed. The various strategies adopted for improving the overall specificity and performance of biosensors are discussed.FindingsIn conclusion, the technology of glucose oxidase-based biosensors for glucose level monitoring is becoming a strong competitor, probably because of high specificity and selectivity, low cost and increased patient compliance. Many industries currently working in this field include Google, Novartis and Microsoft, which demonstrates the significance and strong market potential of self-monitored glucose-oxidase-based biosensors in the near future.Originality/valueThis review paper summarizes comprehensive strategies for continuous glucose monitoring (CGM) in diabetic patients using non-invasive glucose-oxidase biosensors. Non-invasive techniques received significant research interest because of high sensitivity and better patient compliance, unlike invasive ones. Although the results from these innovative devices require frequent calibration against direct BG data, they might be a preferable candidate for future CGM. However, the challenges associated with designing accurate level sensors to biomonitor BG data easily and painlessly needs to be addressed.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference132 articles.

1. Electrochemical biosensors using aptamers for theranostics;Advances in Biochemical Engineering/Biotechnology,2014

2. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration;Biosensors and Bioelectronics,2017

3. Biosensors: their fundamentals, designs, types and most recent impactful applications: a review;Journal of Biosensor and Bioelectronic,2017

4. Ophthalmic glucose monitoring using disposable contact lenses- a review;Journal of Fluorescence,2004

5. A glucose-sensing contact lens: from bench top to patient;Current Opinion in Biotechnology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3