Design and numerical analysis of high-reflective film used in F-P sapphire optical fiber high-temperature sensor

Author:

Lin Qijing,Wu Zirong,Zhao Na,Jiang Zhuangde,Zhang Qidong,Tian Bian,Shi Peng

Abstract

PurposeThe Fabry-Perot sapphire optical fiber sensor is an excellent choice for high-temperature sensing in civil and military fields, such as oil exploitation, engine and turbine. The purpose of this paper is to study the high-reflective film system withstanding high temperature in Fabry-Perot sapphire optical fiber high-temperature sensor. To improve the performance of the sensor and reduce the difficulty of signal acquisition, one of the key ways is to enhance the normalized light intensity of F-P sensor, which can be achieved by coating the high-reflective film system on the fiber end.Design/methodology/approachThe high-reflective film system can be achieved by a multilayer film with alternating ZrO2and Al2O3film layers whose refractive indexes are different. In addition, the optimum film alternating sequences and the influence of the number of film layers, incident angle and temperature should be obtained by numerical analysis.FindingsWith the increase of the number of film layers, the reflectivity rises gradually and the change trend is more and more gentle. A minimum of the spectral reflectivity will occur at a certain incident angle depending on the design of the periodic multilayer system. Temperature affects the reflectivity of high-reflective film system. The normalized light intensity of the F-P sensor coated with high-reflective film system enhances greatly which is helpful to the signal demodulation. The temperature response of the F-P sensor is mainly determined by the characteristics of the F-P cavity.Originality/valueHigher reflectivity, lower cost and easy signal acquisition are the most important features of the introduced high-reflective film system for the Fabry-Perot sapphire optical fiber high-temperature sensor.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3