A deep attention based approach for predictive maintenance applications in IoT scenarios

Author:

De Luca Roberto,Ferraro AntoninoORCID,Galli Antonio,Gallo MosèORCID,Moscato Vincenzo,Sperlì GiancarloORCID

Abstract

PurposeThe recent innovations of Industry 4.0 have made it possible to easily collect data related to a production environment. In this context, information about industrial equipment – gathered by proper sensors – can be profitably used for supporting predictive maintenance (PdM) through the application of data-driven analytics based on artificial intelligence (AI) techniques. Although deep learning (DL) approaches have proven to be a quite effective solutions to the problem, one of the open research challenges remains – the design of PdM methods that are computationally efficient, and most importantly, applicable in real-world internet of things (IoT) scenarios, where they are required to be executable directly on the limited devices’ hardware.Design/methodology/approachIn this paper, the authors propose a DL approach for PdM task, which is based on a particular and very efficient architecture. The major novelty behind the proposed framework is to leverage a multi-head attention (MHA) mechanism to obtain both high results in terms of remaining useful life (RUL) estimation and low memory model storage requirements, providing the basis for a possible implementation directly on the equipment hardware.FindingsThe achieved experimental results on the NASA dataset show how the authors’ approach outperforms in terms of effectiveness and efficiency the majority of the most diffused state-of-the-art techniques.Research limitations/implicationsA comparison of the spatial and temporal complexity with a typical long-short term memory (LSTM) model and the state-of-the-art approaches was also done on the NASA dataset. Despite the authors’ approach achieving similar effectiveness results with respect to other approaches, it has a significantly smaller number of parameters, a smaller storage volume and lower training time.Practical implicationsThe proposed approach aims to find a compromise between effectiveness and efficiency, which is crucial in the industrial domain in which it is important to maximize the link between performance attained and resources allocated. The overall accuracy performances are also on par with the finest methods described in the literature.Originality/valueThe proposed approach allows satisfying the requirements of modern embedded AI applications (reliability, low power consumption, etc.), finding a compromise between efficiency and effectiveness.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

Reference57 articles.

1. A multimodal and hybrid deep neural network model for remaining useful life estimation;Computers in Industry,2019

2. Nblstm: noisy and hybrid convolutional neural network and blstm-based deep architecture for remaining useful life estimation;Journal of Computing and Information Science in Engineering,2020

3. Anomaly monitoring improves remaining useful life estimation of industrial machinery;Journal of Manufacturing Systems,2020

4. Aitia: embedded ai techniques for embedded industrial applications,2020

5. A systematic literature review of machine learning methods applied to predictive maintenance;Computers andi Industrial Engineering,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3