Spatio-temporal analysis of urban expansion using remote sensing data and GIS for the sustainable management of urban land: the case of Burayu, Ethiopia

Author:

Talema Abebe HambeORCID,Nigusie Wubshet Berhanu

Abstract

PurposeThe purpose of this study is to analyze the horizontal expansion of Burayu Town between 1990 and 2020. The study typically acts as a baseline for integrated spatial planning in small- and medium-sized towns, which will help to plan sustainable utilization of land.Design/methodology/approachLandsat5-TM, Landsat7 ETM+, Landsat5 TM and Landsat8 OLI were used in the study, along with other auxiliary data. The LULC map classifications were generated using the Random Forest Package from the Comprehensive R Archive Network. Post-classification, spatial metrics, and per capita land consumption rate were used to understand the manner and rate of expansion of Burayu Town. Focus group discussions and key informant interviews were also used to validate land use classes through triangulation.FindingsThe study found that the built-up area was the most dynamic LULC category (85.1%) as it increased by over 4,000 ha between 1990 and 2020. Furthermore, population increase did not result in density increase as per capita land consumption increased from 0.024 to 0.040 during the same period.Research limitations/implicationsAs a result of financial limitations, there were no high-resolution satellite images available, making it challenging to pinpoint the truth as it is on the ground. Including senior citizens in the study region allowed this study to overcome these restrictions and detect every type of land use and cover.Practical implicationsData on urban growth are useful for planning land uses, estimating growth rates and advising the government on how best to use land. This can be achieved by monitoring and reviewing development plans using satellite imaging data and GIS tools.Originality/valueThe use of Random Forest for image classification and the employment of local knowledge to validate the accuracy of land cover classification is a novel approach to properly customize remote sensing applications.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3