GWLM–NARX

Author:

Mohd Razeef,Butt Muheet Ahmed,Baba Majid Zaman

Abstract

Purpose Weather forecasting is the trending topic around the world as it is the way to predict the threats posed by extreme rainfall conditions that lead to damage the human life and properties. These issues can be managed only when the occurrence of the worse weather is predicted in advance, and sufficient warnings can be executed in time. Thus, keeping in mind the importance of the rainfall prediction system, the purpose of this paper is to propose an effective rainfall prediction model using the nonlinear auto-regressive with external input (NARX) model. Design/methodology/approach The paper proposes a rainfall prediction model using the time-series prediction that is enabled using the NARX model. The time-series prediction ensures the effective prediction of the rainfall in a particular area or the locality based on the rainfall data in the previous term or month or year. The proposed NARX model serves as an adaptive prediction model, for which the rainfall data of the previous period is the input, and the optimal computation is based on the proposed algorithm. The adaptive prediction using the proposed algorithm is exhibited in the NARX, and the proposed algorithm is developed based on the Grey Wolf Optimization and the Levenberg–Marqueret (LM) algorithm. The proposed algorithm inherits the advantages of both the algorithms with better computational time and accuracy. Findings The analysis using two databases enables the better understanding of the proposed rainfall detection methods and proves the effectiveness of the proposed prediction method. The effectiveness of the proposed method is enhanced and the accuracy is found to be better compared with the other existing methods and the mean square error and percentage root mean square difference of the proposed method are found to be around 0.0093 and 0.207. Originality/value The rainfall prediction is enabled adaptively using the proposed Grey Wolf Levenberg–Marquardt (GWLM)-based NARX, wherein an algorithm, named GWLM, is proposed by the integration of Grey Wolf Optimizer and LM algorithm.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference39 articles.

1. Adil, M., Bagirov, A., Mahmood, A. and Barton, A. (2017), “Prediction of monthly rainfall in Victoria, Australia: clusterwise linear regression approach”, Atmospheric Research, Vol. 188, pp. 20-29.

2. Prediction of daily rainfall by a hybrid wavelet-season-neuro technique;Journal of Hydrology,2015

3. A novel approach for weather prognosis using naive bayes modeling technique over Srinagar, J&K, India;Research Review Journal International Journal of Multidisciplinary (RRIJM),2019

4. Weather prediction using data mining techniques: a systematic review;Research Review Journal International Journal of Multidisciplinary (RRIJM),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3