Author:
Wu Yi,Jia Xiaohui,Li Tiejun,Xu Chao,Liu Jinyue
Abstract
Purpose
This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.
Design/methodology/approach
In this paper, a null-space-based task-priority adjustment approach is developed to avoid collisions. The method establishes the relative position of the obstacle and the robot arm by defining the “link space,” and then the priority of the collision avoidance task and the end-effector task is adjusted according to the relative position by introducing the null space task conversion factors.
Findings
Numerical simulations demonstrate that the proposed method can realize collision-free maneuvers for redundant manipulators and guarantee the tracking precision of the end-effector task. The experimental results show that the method can avoid dynamic obstacles in redundant manipulator welding tasks.
Originality/value
A new formula for task priority adjustment for collision avoidance of redundant manipulators is proposed, and the original task tracking accuracy is guaranteed under the premise of safety.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering