Challenge-based, interdisciplinary learning for sustainability in doctoral education

Author:

Piccardo Chiara,Goto Yutaka,Koca Deniz,Aalto Pasi,Hughes Mark

Abstract

Purpose Doctoral candidates possess specialized knowledge that could support sustainability transitions. Doctoral education, however, often focusses on discipline-specific topics and working methods, making it difficult to “see the bigger picture”. This summer school on wood construction gathered doctoral candidates from different fields to explore how solutions to complex sustainability issues could be found by working together across disciplines and by engaging multiple stakeholders. The purpose of this study is to report the pedagogical approaches taken and to understand whether these fostered the candidates’ ability to develop systemic solutions and professional competency. Design/methodology/approach Twenty doctoral candidates from various backgrounds participated in a two-week summer school organized by a consortium of four universities. Interdisciplinary groups worked on real-life challenges using a systemic approach to co-create tangible solutions. To support the creation of socio-technical innovations, stakeholders and experts from different fields were involved. The participants completed two questionnaires during the summer school to help elucidate their learning experiences. Findings The doctoral candidates showed strong willingness to cooperate across disciplines, though they found it important to connect this learning experience to their research. The candidates reported that the experience enhanced their ability to work in a multidisciplinary capacity. The experience identified a solid basis for interdisciplinary learning principles that could be replicated. Originality/value The summer school focussed on an innovative learning experience based on a systems thinking approach and the development of interdisciplinary capacity in the research-business ecosystem.

Publisher

Emerald

Subject

Education,Human Factors and Ergonomics

Reference81 articles.

1. Finding your way in the interdisciplinary Forest: notes on educating future conservation practitioners;Biodiversity and Conservation,2014

2. Transdisciplinarity in the class room? Simulating the co-production of sustainability knowledge;Futures,2015

3. Education for sustainability as a transformative learning process: a pedagogical experiment in EcoDesign doctoral education;Journal of Cleaner Production,2006

4. The carbon impacts of wood products;Forest Products Journal,2014

5. Berlin Communiqué (2003), “Realising the European higher education area”, European higher education area, 19 September”, available at: www.ehea.info/page-ministerial-conference-berlin-2003 (accessed 1 February 2022).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3