Abstract
Purpose
This paper aims to use artificial neural network (ANN) methods to predict stock price crashes in the Chinese equity market.
Design/methodology/approach
Three ANN models are developed and compared with the logistic regression model.
Findings
Results from this study conclude that the ANN approaches outperform the traditional logistic regression model, with fewer hidden layers in the ANN model having superior performance compared to the ANNs with multiple hidden layers. Results from the ANN approach also reveal that foreign institutional ownership, financial leverage, weekly average return and market-to-book ratio are the important variables when predicting stock price crashes, consistent with results from the traditional logistic model.
Originality/value
First, the ANN framework has been used in this study to forecast the stock price crashes and compared to the traditional logistic model in the world’s largest emerging market China. Second, the receiver operating characteristics curves and the area under the ROC curve have been used to evaluate the forecasting performance between the ANNs and the traditional approaches, in addition to some traditional performance evaluation methods.
Reference75 articles.
1. Does takeover activity affect stock price crash risk? Evidence from international M&A laws;Journal of Corporate Finance,2020
2. NeuralNetTools: visualisation and analysis tools for neural networks;Journal of Statistical Software,2018
3. The use of the area under the ROC curve in the evaluation of machine learning algorithms;Pattern Recognition,1997
4. Diagnostic test accuracy evaluation for medical professionals;Package DiagnosisMed in R,2010
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献