Feature intersection for agent-based customer churn prediction

Author:

N. Sandhya,Samuel Philip,Chacko Mariamma

Abstract

Purpose Telecommunication has a decisive role in the development of technology in the current era. The number of mobile users with multiple SIM cards is increasing every second. Hence, telecommunication is a significant area in which big data technologies are needed. Competition among the telecommunication companies is high due to customer churn. Customer retention in telecom companies is one of the major problems. The paper aims to discuss this issue. Design/methodology/approach The authors recommend an Intersection-Randomized Algorithm (IRA) using MapReduce functions to avoid data duplication in the mobile user call data of telecommunication service providers. The authors use the agent-based model (ABM) to predict the complex mobile user behaviour to prevent customer churn with a particular telecommunication service provider. Findings The agent-based model increases the prediction accuracy due to the dynamic nature of agents. ABM suggests rules based on mobile user variable features using multiple agents. Research limitations/implications The authors have not considered the microscopic behaviour of the customer churn based on complex user behaviour. Practical implications This paper shows the effectiveness of the IRA along with the agent-based model to predict the mobile user churn behaviour. The advantage of this proposed model is as follows: the user churn prediction system is straightforward, cost-effective, flexible and distributed with good business profit. Originality/value This paper shows the customer churn prediction of complex human behaviour in an effective and flexible manner in a distributed environment using Intersection-Randomized MapReduce Algorithm using agent-based model.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3