An error-propagation aware method to reduce the software mutation cost using genetic algorithm

Author:

Mohammad Javad Hosseini Seyed,Arasteh BahmanORCID,Isazadeh Ayaz,Mohsenzadeh Mehran,Mirzarezaee Mitra

Abstract

PurposeThe purpose of this study is to reduce the number of mutations and, consequently, reduce the cost of mutation test. The results of related studies indicate that about 40% of injected faults (mutants) in the source code are effect-less (equivalent). Equivalent mutants are one of the major costs of mutation testing and the identification of equivalent and effect-less mutants has been known as an undecidable problem.Design/methodology/approachIn a program with n branch instructions (if instruction) there are 2n execution paths (test paths) that the data and codes into each of these paths can be considered as a target of mutation. Given the role and impact of data in a program, some of data and codes propagates the injected mutants more likely to the output of the program. In this study, firstly the error-propagation rate of the program data is quantified using static analysis of the program control-flow graph. Then, the most error-propagating test paths are identified by the proposed heuristic algorithm (Genetic Algorithm [GA]). Data and codes with higher error-propagation rate are only considered as the strategic locations for the mutation testing.FindingsIn order to evaluate the proposed method, an extensive series of mutation testing experiments have been conducted on a set of traditional benchmark programs using MuJava tool set. The results depict that the proposed method reduces the number of mutants about 24%. Also, in the corresponding experiments, the mutation score is increased about 5.6%. The success rate of the GA in finding the most error-propagating paths of the input programs is 99%. On average, only 7.46% of generated mutants by the proposed method are equivalent. Indeed, 92.54% of generated mutants are non-equivalent.Originality/valueThe main contribution of this study is as follows: Proposing a set of equations to measure the error-propagation rate of each data, basic-block and execution path of a program. Proposing a genetic algorithm to identify a most error-propagating path of program as locations of mutations. Developing an efficient mutation-testing framework that mutates only the strategic locations of a program identified by the proposed genetic algorithms. Reducing the time and cost of mutation testing by reducing the equivalent mutants.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference42 articles.

1. Programming guidelines for improving software resiliency against soft-errors without performance overhead;Springer Journal of Computing,2018

2. Developing inherently resilient software against soft-errors based on algorithm level inherent features;Journal of Electronic Testing,2014

3. An empirical study of static program slice size;ACM Transaction on Software Engineering and Methodology,2007

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3