Quasi-statically growing crack tip fields in plastically compressible hardening-softening-hardening solid

Author:

Singh Sushant,Khan Debashis

Abstract

Purpose As the normality concept for frictional dilatant material has a serious drawback, the key feature in this numerical study is that the material here is characterized by elastic-viscoplastic constitutive relation with plastic non-normality effect for two different hardness functions. The paper aims to discuss this issue. Design/methodology/approach Quasi-static, mode I plane strain crack tip fields have been investigated for a plastically compressible isotropic hardening–softening–hardening material under small-scale yielding conditions. Finite deformation, finite element calculations are carried out in front of the crack with a blunt notch. For comparison purpose a few results of a hardening material are also provided. Findings The present numerical calculations show that crack tip deformation and the field quantities near the tip significantly depend on the combination of plastic compressibility and slope of the hardness function. Furthermore, the consideration of plastic non-normality flow rule makes the crack tip deformation as well as the field quantities significantly different as compared to those results when the constitutive equation exhibits plastic normality. Originality/value To the best of the authors’ knowledge, analyses, related to the constitutive relation exhibiting plastic non-normality in the context of plastic compressibility and softening (or softening hardening) on the near tip fields, are not explored in the literature.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference21 articles.

1. Quasi-statically growing crack-tip fields in elastic perfectly plastic pressure-sensitive materials under plane strain conditions;International Journal of Fracture,1997

2. Soil mechanics and plastic analysis of limit design;Quarterly of Applied Mathematics,1952

3. Analysis of uniaxial compression of vertically aligned carbon nanotubes;Journal of Mechanics and Physics of Solids,2011

4. Near-tip fields for cracks growing steadily in elastic-perfectly-plastic compressible material,1988

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation analysis to estimate stress fields along the rectangular crack tip in foams;Materials Today: Proceedings;2022

2. Effect of crack tip shape on near-tip deformation and fields in plastically compressible solids;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2019-09-20

3. Crack tip shape effect on stress-strain fields in plastically compressible materials;IOP Conference Series: Materials Science and Engineering;2019-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3