Noise trading and stock market bubbles: what the derivatives market is telling us

Author:

Beyer Scott B.ORCID,Hughen J. Christopher,Kunkel Robert A.

Abstract

PurposeThe authors examine the relation between noise trading in equity markets and stochastic volatility by estimating a two-factor jump diffusion model. Their analysis shows that contemporaneous price deviations in the derivatives market are statistically significant in explaining movements in index futures prices and option-market volatility measures.Design/methodology/approachTo understand the impact noise may have in the S&P 500 derivatives market, the authors first measure and evaluate the influence noise exerts on futures prices and then investigate its influence on option volatility.FindingsIn the period from 1996 to 2003, this study finds significant changes in the volatility and mean reversion in the noise level and a significant increase in its relation to implied volatility in option prices. The results are consistent with a bubble in technology stocks that occurred with significant increases in noise trading.Research limitations/implicationsThis study provides estimates for this model during the periods preceding and during the technology bubble. The study analysis shows that the volatility and mean reversion in the noise level are much stronger during the bubble period. Furthermore, the relation between noise trading and implied volatility in the futures market was of a significantly larger magnitude during this period. The study results support the importance of noise trading in market bubbles.Practical implicationsBloomfield, O'Hara and Saar (2009) find that noise traders lower bid–ask spreads and improve liquidity through increases in trading volume and market depth. Such improved market conditions could have positive effects on market quality, and this impact could be evidenced by lower implied volatility when noise traders are more active. Indeed, the results in this study indicate that the level and characteristics of noise trading are fundamentally different during the technology bubble, and this noise trading activity has a larger impact during this period on implied volatility in the options market.Originality/valueThis paper uniquely analyzes derivatives on the S&P 500 Index in order to detect the presence and influence of noise traders. The authors derive and implement a two-factor jump diffusion noise model. In their model, noise rectifies the difference of analysts' opinions, market information and beliefs among traders. By incorporating a reduced-form temporal expression of heterogeneities among traders, the model is rich enough to capture salient time-series characteristics of equity prices (i.e. stochastic volatility and jumps). A singular feature of the authors’ model is that stochastic volatility represents the random movements in asset prices that are attributed to nonmarket fundamentals.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Finance

Reference41 articles.

1. Bubbles and crashes;Econometrica,2003

2. An alternative valuation model for contingent claims;Journal of Financial Economics,1997

3. Empirical performance of alternative option pricing models;Journal of Finance,1997

4. Systematic noise;Journal of Financial Markets,2009

5. Bates, D.S. (1988), “Pricing options under jump-diffusion processes”, Working Paper 37-88, Rodney L. White Center for Financial Research, The Wharton School, University of Pennsylvania, Philadelphia.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review and bibliometric analysis of noise trading;Qualitative Research in Financial Markets;2022-09-01

2. Measuring the Effect of Noise Trading on Bubbles in Tehran Stock Exchange;Journal of Economic Modeling Research;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3